
Journal of Materials Processing Technology 139 (2003) 237–242
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Abstract

Acoustic emission (AE) and motor power sensors were used to detect the tool breakage in turning. Time–frequency analysis was used to
process different AE signals emitted from the cutting process (normal cutting condition, tool breakage, chip fracture, etc.). Four types of
power signal variation were observed in experiments when tool breakage occurred, which suggest that the change of power signals in the
time domain was stochastic. Delayed variance is proposed to extract features from the power signals. The tool condition can be recognized
through a neural network based on adaptive resonance theory (ART2).
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The automatic in-process detection of cutting tool break-
age is very important in achieving advanced manufacturing.
To prevent possible damage to the workpiece and machine
tool, a reliable and effective sensing technique is required
for providing a rapid response to an unexpected tool failure.

Several methods that include monitoring the cutting force
[1], motor power[2], and acoustic emission (AE)[3] have
been investigated for this purpose. Sensing AE signals from
the cutting process is one of the most promising methods.
Because of its sensitivity, quick-response and the high fre-
quency of AE signal to avoid ambient noise, this method is
quite suitable to monitor tool breakage. AE in the turning
process originates from several sources, such as tool break-
age and chipping, chip fracture, friction between the tool and
workpiece, plastic deformation, etc. Therefore, how to ex-
tract the tool breakage features from the various AE sources
becomes the key problem to be solved. Research over the
past few years has analyzed AE signals in various meth-
ods, such as count-rate, RMS voltage, spectral density, and
so on. However, due to many AE sources during the cut-
ting process, AE signals are mixed together in both the time
and frequency domain. It is difficult to separate the differ-
ent AE signals only in time domain or in frequency domain.
Time–frequency analysis has been used to process the AE
signals in this paper.
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Detecting cutting force is another effective method to
monitor tool breakage. Cutting force sensors, such as dy-
namometers are more suited to the laboratory and are diffi-
cult to use on production machine tools. As an alternative
cutting force sensor, a motor power transducer can be in-
stalled conveniently on the machine tools, and motor power
signals can also be easily obtained. Experimental work[4]
shows that the tangential force is sensitive to tool breakage.
This force increases suddenly when a broken tool nose is
jammed between the tool and workpiece, then drops to zero
due to the gap between the tool and the workpiece as the
broken part of the tool insert was released. As the tool con-
tinued to move, it approached the workpiece again closing
the gap and forces started to increase beyond their original
values. However, more change in the nature of motor power
signals were observed during the turning experiments pre-
sented in this paper. At the moment of tool breakage, one
situation is that it first increases, then decreases to a rela-
tively steady level, whilst another is that it decreases quickly
to a low level, keep this level, and increases quickly to a
new high level. These situations suggest that the change of
power signal in the time domain is stochastic. To extract the
tool breakage features from the above four change types of
motor power, an improved signal processing method named
delayed variance is proposed.

An unsupervised network based on the adaptive reso-
nance theory (ART2)[5] has been used for the tool con-
dition identification because of its excellent characteristics,
such as fast learning, flexibility, and self-organizing ability.
Features extracted from the motor power signals processed
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by the delayed variance method and AE signals processed
by time–frequency analysis are combined into a vector in-
put into ART2 to realize the recognition of tool breakage.
Extensive cutting experiments have been carried out to eval-
uate the performance of this approach.

2. Signal processing

2.1. Time–frequency analysis

AE signals emitted from the cutting process can be di-
vided into two types: continuous AE signal and burst AE
signals. The magnitude of burst AE signals is often much
larger than that of continuous AE signals. Burst AE signals
originate from several sources, such as tool breakage, ex-
tension of micro-cracks in tool inserts, chip fracture, colli-
sion between the chip and the workpiece, etc. It is difficult
to recognize the AE signals emitted at tool breakage from
other AE sources in the time domain. Frequency analysis
using fast Fourier transformation (FFT) has been employed
by some researchers to process AE signals. The theoreti-
cal hypothesis of FFT is that signals are stationary or time
invariant. However, burst AE signals are non-stationary be-
cause they are often related to extension of material crack-
ing and breakage. Thereby, a more reasonable method to
process AE signals is to adopt time–frequency analysis.

In 1966, Cohen generalized time–frequency distributions
(TFDs) to an uniform expression as follows:
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wherex(µ) is the time signal,x∗(µ) is its complex conju-
gate, andφ(ξ, τ) is a kernel function, representative of the
particular distribution function. The bilinear structure of the
TFD of Cohen class leads to the intersection of cross terms of
multi-component signals. The exponential distribution (ED)
proposed by Choi and Williams[6] solved this problem ef-
fectively. The kernel function of ED is

φ(ξ, τ) = e−ξ2τ2/σ (2)

Cross terms can be suppressed by adjusting the constantσ.

2.2. Delayed variance method

According to the following experiments introduced, the
magnitude of the motor power signal in the time domain
changes stochastically at the moment of tool breakage.
Therefore, it is unreliable to detect the tool condition by
preset threshold. The motor power of machine tools change
in various ways due to tool breakage, which means that the
motor power signal deviates from the mean under normal
cutting conditions. Based on this fact, the delayed variance

method is proposed to select the tool breakage features
from the motor power signals.

In a short period of time, the tool condition can be con-
sidered unchanged under normal cutting conditions. As a
result, the signal is stationary. Variance of the motor power
signal is calculated based on the mean of an earlier short
interval of time. In the real cutting process, normally the
signal mean is calculated recursively based on the latest
sampled data, so is the variance of the signal. Tool break-
age signals are homogenized into the mean based on which
variance is calculated that is relatively small after tool break-
age. However, the calculated variance based on the earlier
mean increases as compared with the traditional calculating
method. Therefore, delayed variance can reflect the change
of tool condition more definitely. The algorithm is shown
in Ref. [7].

3. Experiments

Fig. 1 shows the experimental set-up and data acqui-
sition system. Turning experiments were performed on a
J1-MAZAK530×1000 horizontal lathe. The workpiece ma-
terial used was 45 carbon steel round bar (hardness HB175).
The variable-position carbide chips used were YT15. Sev-
eral tiny high-speed steel bits were hammered into the bar
to increase tool breakage.

AE signals were measured by a piezoelectric AE sen-
sor, which was mounted at the side of the tool shank. Sig-
nals were amplified, filtered (band pass between 20 kHz and
1 MHz) and fed to a THS720 high-speed oscillograph. The
signals were sampled at the sampling frequency of 2.5 MHz.
The time domain record length is 2500. Motor power signals
were transmitted to an A/D board through a power trans-
ducer. Motor power signals were sampled at the sampling
frequency of 4 kHz. The time domain record length is 8000.
Different cutting conditions (variable revolutionary speed,

Fig. 1. Experimental set-up.
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feed velocity, cutting depth) were explored to obtain vari-
able tool broken area.

4. Data analysis and results

Four types of AE signals were observed during the cutting
process in the experiments (seeFig. 2). The figure shows that
the RMS of the AE signals under normal cutting conditions
is between 25 and 200 mV. The RMS of the AE signals at
the moment of tool breakage increases suddenly to above
300 mV normally, and the magnitude of the RMS is related
to the area of tool breakage.Fig. 2(c) shows that the RMS
of the AE signals also increases suddenly to 200–500 mV
at chip fracture. Therefore, it is difficult to recognize tool
breakage (from chip fracture only by RMS of AE signals).
Time–frequency analysis is employed to process the AE
signals. The TFD of the corresponding signals are shown
in Fig. 3. The difference between various TFD of signals
is obvious. TFD of AE signal is divided into many areas,
and the energy contained in each area can be obtained. Tool
breakage features can be extracted easily from the TFD as
a normalized vector.

Experiment shows that the change of motor power signal
in time domain is uncertain at tool breakage. Four typical

Fig. 2. Various AE signals: (a) under normal cutting conditions; (b) tool breakage; (c) chip fracture; (d) by stochastic factors.

changes were detected in experiments (shown inFig. 4).
(1) As shown in (a), magnitude of motor power signal
increases quickly due to tool breakage. This case may be
caused by the increase of the rake angle. (2) As shown
in (b), the power increases suddenly when a broken tool
nose jammed between the tool and workpiece, then drops
due to the diminished cutting depth. (3) As shown in (c),
power decreases quickly to a low level. This situation has
two possible causes. One reason is that cutting depth di-
minishes too much because of large tool broken area. The
other is that rake or flank face flaking off introduces the in-
crement of the effective cutting angles, which reduce the
consuming of motor power. (4) As shown in (d), power
drops first and then increases. In all above cases, the most
often situation occurred is case (1). Signal processing re-
sults of above signals by delayed variance method are
shown in Fig. 5. Delayed variance of signals has much
increase because of tool breakage, which demonstrates
that the method proposed is effective. Therefore, the nor-
malized delayed variance can be selected as tool breakage
feature.

To detect tool breakage automatically, a neural network
ART2 is employed. The principle and architecture of ART2
were described in detail by Carpenter and Grossberg[5].
Two delayed variance features of the motor power signal and
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Fig. 3. TFD of AE signals: (a) under normal cutting condition; (b) tool breakage; (c) chip fracture; (d) by stochastic factors.

Fig. 4. Various motor power signals of tool breakage.
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Fig. 5. Variance of various motor power signals.

the TFD feature vectors of the AE signal are combined into
an input vector of ART2. ART2 has the ability to self-scale
the input vector. Because the dimension of the TFD feature
vector is much larger than that of the delayed variance fea-
ture, it is necessary to increase the number of delayed vari-
ance features. Otherwise, the delayed variance feature will
be considered as noise of the input vector of ART2. Each
input vector of ART2 is a sample mentioned below. The net-
work have been trained by 20 learning samples under three
conditions, as follow: (1) samples consist of TFD feature
only; (2) samples consist of delayed variance feature only;
(3) samples consist of both of the above combined features.

In the first case, vigilance parameter is set between 0.93
and 0.98, and the ART2 classify samples into four classes
as shown inFig. 2, where the second class represents a bro-
ken tool. In the second case, the vigilance parameter is set
between 0.97 and 0.98, and the samples are classified into
two classes of normal and broken tool condition. In the third
case, the vigilance parameter selected is 0.93, and the sam-
ples are classified into two classes of normal and broken
tool condition. When the vigilance parameter selected in-
creases to 0.98, the number of class increases to 4, the same
as in the first case. As a result, the classification of ART2 is
more stable and effective in the recognition of tool break-
age using the combined features. When the training process

is finished, 20 testing samples consisting of combined fea-
tures were input to the ART2 neural network. The correct
recognition rate of tool breakage is a constant 95% when
the vigilance parameter is 0.97.

5. Conclusions

Motor power and AE sensors were used to monitor tool
breakage. Due to the difficulty of distinguishing various AE
signals emitted from the cutting conditions (normal cutting
condition, tool breakage, chip fracture, etc.), time–frequency
analysis is adopted to extract features from the signals. Four
types of power signal variation were detected in experiments
when tool is broken, which suggest that the change of the
power signals in the time domain was stochastic. An im-
proved signal processing method, named delayed variance,
is proposed to extract features from the power signals. The
tool condition can be recognized through an ART2 neural
network effectively.
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